Assessment Schedule - 2005

Chemistry: Describe selected atomic, molecular and ionic properties (90697)

Evidence Statement

Q	Evidence	Achievement	Achievement with Merit	Achievement with Excellence
1(a)	Trend in radius: it increases Trend in 1st IE: it decreases Reason: Going down the group, electrons are added and valence electrons are in energy levels further from the nucleus, resulting in the increased radius. Despite the increased nuclear charge (and more inner levels of electrons providing shielding), there is a decrease in electrostatic attraction. This means the energy required to remove an electron decreases.	BOTH trends correct. OR links ONE trend to number of electron shells / levels NOT orbitals.	Answer links increased radius and decreased IE to electron arrangement and also decreased electrostatic attraction / ease of removal of electron.	
1(b) (i)	F $1s^22s^22p^5$ F- $1s^22s^22p^6$ Na ⁺ $1s^22s^22p^6$	All correct.		
1(b) (ii)	F ⁻ and F atom both have <u>the same nuclear charge</u> but the additional valence electron in the F ⁻ ion results in <u>increased electrostatic repulsion between the valence electrons</u> and hence an increased radius.	Correctly describes relative sizes of F and F	Correctly describes relative sizes of both AND discussion shows clear understanding of how relative sizes are linked to electron configuration and charge on nucleus for ONE of the pairs.	Discussion shows clear understanding of how relative sizes are linked to electron configuration and charge on nucleus for both pairs.
1(b) (iii)	F ⁻ and Na ⁺ have <u>same electron configuration</u> but Na ⁺ <u>has more protons in the nucleus.</u> This results in increased electrostatic attraction between nucleus and valence electrons so radius of Na ⁺ is smaller than F ⁻ .	AND relative sizes of F ⁻ and Na ⁺ .		
2(a) (i)	$\begin{bmatrix} \vdots \\ O - N \\ \vdots \\ O - N \\ \vdots \\ O \vdots $	Correct number of valence electrons in both structures AND one structure correct. May not include brackets around Lewis diagram and charges. Iodate ion may have expanded octet on central atom	Both Lewis structures correct. Must include brackets around each Lewis diagram and must show charge.	
2(a) (ii)	Nitrate ion is trigonal planar while iodate ion is a trigonal pyramid. This is because the nitrate ion has only 3 regions of electron density around the central atom and repulsion between these 3 results in a 120° bond angle. The iodate has 4 regions of negative charge around the I atom and these point towards the corner of a tetrahedron. With only 3 of these regions being bonded pairs of electrons, the shape of the molecule is a trigonal pyramid with bond angles of approximately 109°.	Correct identification of BOTH shapes – must be consistent with Lewis diagram drawn.	Correct identification of both shapes and explanation in terms of regions of electron density (not bonds) around the central atom.	
2(b)	The Cl atom is more electronegative than the P	Description correctly	Partial discussion that	Correct and full

	atom so each of the P–Cl bonds is polar. In PCl ₅ , these P–Cl bonds are symmetrically arranged around the central P atom so that the polarity of the bonds cancels out and overall the molecule is non-polar. In comparison the presence of the nonbonding pair of electrons on the P atom of PCl ₃ means that there is not a symmetrical arrangement of charge around the P atom and the molecule is polar.	refers to relative electronegativity of the atoms OR Correctly identifies the polarity of BOTH PCl ₃ and PCl ₅ .	relates correct shape of molecule to polarity AND description correctly refers to the relative electro-negativities of the atoms.	discussion in relation to BOTH polar nature of PCl ₃ and non-polar nature of PCl ₅ .
3(a)	(i) ${}^{32}P \rightarrow {}^{32}S + \beta$ (ii) ${}^{236}U \rightarrow {}^{90}Kr + {}^{144}Ba + 2 {}^{1}n$	Has correct mass numbers for species in both eqns OR correctly identifies element formed in both eqns.	Both equations correct.	
3(b)	28 650 years is 5 half-lives, so fraction remaining is 1/32 (0.03125) of carbon-14.	Correct number of half-lives.	Correct fraction remaining showing understanding of term half-life.	
4(a)	$\mathrm{Mn^{2^+}}(aq)$ colourless / pale pink $\mathrm{MnO_4^{2^-}}(aq)$ green $\mathrm{Cr^{3^+}}(aq)$ green or blue	TWO correct.		
(b)	 (i) The pale orange solution of Fe³⁺ turns red due to the presence of the [FeSCN]²⁺ ion. Fe³⁺ + SCN⁻ → [FeSCN]²⁺ (ii) The blue solution of copper sulfate turns green / yellow as the complex [CuCl₄]²⁻, which is yellow, forms: [Cu(H₂O)₆]²⁺ + 4HCl → [CuCl₄]²⁻ + 4H₃O⁺ + 2H₂O or correct alternative with H⁺ as product or 	ONE correct observation clearly stating a colour change OR Correctly identifies 1 complex ion using a formula.	For ONE of the reactions clearly links the colours observed to the species involved, with correct formula for at least one of the complex ions OR 2 correctly balanced equations.	Correctly links observations to species present for BOTH reactions, AND at least one balanced equation correct.
	including only Cl ⁻ on left rather than HCl.			

Judgement Statement

Achievement	Achievement with Merit	Achievement with Excellence
SIX opportunities answered at Achievement level or higher.	SEVEN opportunities answered with at least FIVE at Merit level or higher.	EIGHT opportunities answered with at least TWO at Excellence level and FOUR at Merit level.
6 × A	5 × M plus 2 × A	2 × E plus 4 × M plus 2 × A